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Abstract The electroluminescent (EL) properties of a new
coumarin derivative, 3-(4-(anthracen-10-yl)phenyl)-benzo
[5,6]coumarin (APBC), were investigated. The results show
that the EL devices comprised of vacuum vapor-deposited
films using the derivative as dopant exhibited blue emission
that is identical to the photoluminescence of the thin film.
The electroluminescence device of ITO/2-TNATA (5 nm)/
NPB (40 nm)/CBP : APBC (1.0 wt%, 30 nm)/PBD
(30 nm)/LiF (1 nm)/Al (100 nm) gives a maximum
luminous efficiency of 2.3 cd/A at the current density
of 20 mA/cm2, and maximum luminance of 5169 cd/m2 at
16 V. The external quantum efficiency of the device is 1.85 %.
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Introduction

Light-emitting materials are the primary substance for or-
ganic light-emitting diodes (OLEDs) that generate electro-
luminescence (EL) in flat panel display applications.
Fundamentally, EL originates from electron and hole recom-
bination on the emitting materials in the thin film layer

structure of OLEDs [1]. OLEDs have attracted intensive
attention and constitute a rapidly developing field due to
their potential use in the development of energy-efficient,
excellent tunability of emissive color by chemical structure
modifications, lower direct current drive voltage, less power
consumption, low-cost, full-color, flat-panel displays and
other emissive products [2–6].

Coumarins are an important class of naturally occurring
and synthetic compounds, which have been extensively
investigated for electronic and photonic applications
[7–11], such as fluorescence probe, charge-transfer agents,
solar energy collectors, and nonlinear optical properties due
to their characteristics of high emission yield, excellent
photo-stability, extended spectral range, good solubility and
their relative ease of synthesis. Coumarin dyes were always
used as blue, green and red dopants in OLEDs [12–14]. How-
ever, coumarin dyes are easily self-quenched in high concen-
tration due to the intermolecular interactions and aggregations,
so as the light-emitting materials they are always doped in the
host materials at appropriate concentration to fabricate
OLEDs with reasonable, luminant efficiency [15–19].

Recently, we have synthesized a new coumarin derivative,
3-(4-(anthracen-10-yl)phenyl)-benzo[5,6]coumarin (APBC)
(Fig. 1). The strategies for designing are to increase the
rigidity of the molecule and enlarge the π-π* conjugation that
influence EL performance of the emitting materials. In this
article, we fabricated the electroluminescence devices by
vacuum vapor-deposited films with the coumarin derivative as
emission material and investigated the EL properties.

Experimental

The multilayer OLEDs were fabricated by the vacuum depo-
sition method. The ITO-coated glass with a sheet resistance
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R□~20 Ω/□ was cut into 3×3 cm plates and etched in
dilute hydrochloric acid for 20 min. Then the ITO
substrates were routinely cleaned by ultrasonic treat-
ment in solvents and then cleaned by exposure to an
UV-ozone ambient. All organic layers were sequential-
ly deposited without breaking vacuum (2×10−4 Pa).
Thermal deposition rates for organic materials, LiF
and Al were ~2 Å/s, ~ 1 Å/s and 10 Å/s, respectively.
The active area of the devices was 12 mm2. The EL
spectra were measured on a Hitachi MPF-4 fluorescence
spectrometer. The characterization of brightness–current–
voltage (B–I–V) were measured with a 3645 DC power sup-
ply combined with a 1980A spot photometer and were
recorded simultaneously. All measurements were done in air
at room temperature without any encapsulation.

The molecular structures of the materials and the struc-
ture of devices used in this work are shown in Fig. 2. CBP :
APBC was employed as the emitter, 2-TNATA, NPB, and
PBD were used as hole injection, hole transport and electron
transport materials, respectively. LiF was used as the
electron-injection layer.

Results and Discussion

The devices with the configuration of ITO/2-TNATA
(5 nm)/NPB (40 nm)/CBP : APBC (x wt%, 30 nm)/PBD
(30 nm)/LiF (1 nm)/Al (100 nm) were fabricated.

Figure 3 shows the EL spectra of the devices with APBC
doped at concentration of 1.0 wt% at different driving
voltages. The intensities and spectral features of EL emis-
sions do not change with increasing the driving voltages. All
devices exhibit blue emissions with the maximum peaks at
460 nm.

The photoluminescent behavior of APBC doped in poly
(methyl methacrylate) (PMMA) was also investigated in
Fig. 3. The mixed system of APBC with PMMA was pre-
pared by dissolving APBC with a certain weight ratio into
acetone. The sample for spectroscopy was fabricated by
spin-coating the acetone solution onto clean quartz sub-
strates. From Fig. 3, it can be seen that the EL spectra of
APBC are identical to the PL spectrum of its thin film. The
result indicates that the same excitation state was involved,
i.e., the light is resulted from the derivative molecule.

Figures 4 and 5 show the representative luminance-
voltage-current density (L-V-I) characteristics of the devices
doped APBC with various concentrations. Bright blue emis-
sion could be seen easily under normal light conditions. The
L-V-I curves of the devices revealed excellent diode behav-
ior, i.e., under the forward bias, the luminances and current
densities increased with the increase of applied voltage after
surpassing the turn-on voltage. The turn-on voltages of the
devices at the doped concentrations of 1.0 wt% and 2.0 wt%
were 8 V. Moreover, under reverse bias, no obvious increase
of current was observed when the applied voltage was
increased. The luminance and the current density of the
device (1.0 wt%) are higher than those of the device
(2.0 wt%). The maximal luminances were 5169 cd/m2 at
16 V for the device doped concentration of 1.0 wt% and
3867 cd/m2 at 18.5 V for the device doped concentration of
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Fig. 1 Chemical structure of 3-(4-(anthracen-10-yl)phenyl)-benzo
[5,6]coumarin (APBC)
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Fig. 2 The molecular
structures of the materials
and the structure of EL device

1510 J Fluoresc (2012) 22:1509–1512



2.0 wt%, respectively. From Figs. 4 and 5, we can see that
the device (2.0 wt%) needs higher drive voltage than the
device (1.0 wt%). In other words, it was thought that the
increasing doped concentrations suppressed the luminance
of the devices, indicating that strong charge trapping oc-
curred in present device structures. It is obvious that the
better APBC concentration in the CBP host is 1.0 wt%.

We achieved the maximum brightness at a current density
of 466 mA/cm2 for the device doped concentration of
1.0 wt% and at a current density of 413 mA/cm2 for the
device doped concentration of 2.0 wt% (Fig. 6).

Figure 7 gives the relationships between the current effi-
ciency and the current density in the devices with various
APBC doping concentrations, which shows the maximal
current efficiencies at the doped concentrations of 1.0 wt%

and 2.0 wt% were 3.2 and 5.2, respectively. It is indicated
that all doped devices have higher efficiencies at low current
densities, and then the efficiencies fall off fleetly at higher
current densities. The 1.0 wt% doped device has a maxi-
mum luminous efficiency of 2.3 cd/A at the current density
of 20 mA/cm2, wherease the 2.0 wt% doped device has a
maximum luminous efficiency of 2.0 cd/A at the current
density of 20 mA/cm2. The external quantum efficiencies of
the devices are 1.85 % and 1.55 %, respectively.

The above results indicate that the electron–hole recom-
bination may not be effective under high current density,
revealing that the host CBP might not be an optimal host
material. The present device performance could be further
improved by substituting other host candidates.
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Fig. 3 PL and EL spectra of the devices with the configuration of ITO/
2-TNATA (5 nm)/NPB (40 nm)/CBP : dopant (1.0 wt%, 30 nm)/PBD
(30 nm)/LiF (1 nm)/Al (100 nm) at different applied voltages
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Fig. 4 The luminance–voltage–current density characteristics of the
device with the derivative (1.0 wt %)
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Fig. 5 The luminance–voltage–current density characteristics of the
device with the derivative (2.0 wt %)
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Fig. 6 Luminance–current characteristics of the doped devices with
the various derivative concentrations
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Conclusion

The electroluminescent (EL) properties of a new coumarin
derivative, 3-(4-(anthracen-10-yl)phenyl)-benzo[5,6]couma-
rin, were investigated. The EL devices comprised of vacuum
vapor-deposited films using the derivative as dopant shown
blue emission that is identical to the photoluminescence of the
thin film. The electroluminescence device of ITO/2-TNATA
(5 nm)/NPB (40 nm)/CBP : dopant (1.0 wt%, 30 nm)/PBD
(30 nm)/LiF (1 nm)/Al (100 nm) gives a maximum luminous
efficiency of 2.3 cd/A at the current density of 20 mA/cm2,
and maximum luminance of 5169 cd/m2 at 16 V. The external
quantum efficiency of the device is 1.85 %.
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Fig. 7 Current efficiency-current density characteristics of the doped
devices with the various derivative concentrations
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